Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14659, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670077

RESUMO

Physiological muscle contraction requires an intact ligand gating mechanism of the ryanodine receptor 1 (RyR1), the Ca2+-release channel of the sarcoplasmic reticulum. Some mutations impair the gating and thus cause muscle disease. The RyR1 mutation T4706M is linked to a myopathy characterized by muscle weakness. Although, low expression of the T4706M RyR1 protein can explain in part the symptoms, little is known about the function RyR1 channels with this mutation. In order to learn whether this mutation alters channel function in a manner that can account for the observed symptoms, we examined RyR1 channels isolated from mice homozygous for the T4709M (TM) mutation at the single channel level. Ligands, including Ca2+, ATP, Mg2+ and the RyR inhibitor dantrolene were tested. The full conductance of the TM channel was the same as that of wild type (wt) channels and a population of partial open (subconductive) states were not observed. However, two unique sub-populations of TM RyRs were identified. One half of the TM channels exhibited high open probability at low (100 nM) and high (50 µM) cytoplasmic [Ca2+], resulting in Ca2+-insensitive, constitutively high Po channels. The rest of the TM channels exhibited significantly lower activity within the physiologically relevant range of cytoplasmic [Ca2+], compared to wt. TM channels retained normal Mg2+ block, modulation by ATP, and inhibition by dantrolene. Together, these results suggest that the TM mutation results in a combination of primary and secondary RyR1 dysfunctions that contribute to disease pathogenesis.


Assuntos
Doenças Musculares , Miotonia Congênita , Animais , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina , Dantroleno , Citoplasma , Trifosfato de Adenosina
2.
Biophys J ; 122(17): 3516-3531, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37533257

RESUMO

Ryanodine receptors (RyRs) are Ca2+ release channels, gated by Ca2+ in the cytosol and the sarcoplasmic reticulum lumen. Their regulation is impaired in certain cardiac and muscle diseases. Although a lot of data is available on the luminal Ca2+ regulation of RyR, its interpretation is complicated by the possibility that the divalent ions used to probe the luminal binding sites may contaminate the cytoplasmic sites by crossing the channel pore. In this study, we used Eu3+, an impermeable agonist of Ca2+ binding sites, as a probe to avoid this complication and to gain more specific information about the function of the luminal Ca2+ sensor. Single-channel currents were measured from skeletal muscle and cardiac RyRs (RyR1 and RyR2) using the lipid bilayer technique. We show that RyR2 is activated by the luminal addition of Ca2+, whereas RyR1 is inhibited. These results were qualitatively reproducible using Eu3+. The luminal regulation of RyR1 carrying a mutation associated with malignant hyperthermia was not different from that of the wild-type. RyR1 inhibition by Eu3+ was extremely voltage dependent, whereas RyR2 activation did not depend on the membrane potential. These results suggest that the RyR1 inhibition site is in the membrane's electric field (channel pore), whereas the RyR2 activation site is outside. Using in silico analysis and previous results, we predicted putative Ca2+ binding site sequences. We propose that RyR2 bears an activation site, which is missing in RyR1, but both isoforms share the same inhibitory Ca2+ binding site near the channel gate.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Músculo Esquelético/metabolismo , Sítios de Ligação , Cálcio/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457253

RESUMO

Cardiac diseases are the leading causes of death, with a growing number of cases worldwide, posing a challenge for both healthcare and research. Therefore, the most relevant aim of cardiac research is to unravel the molecular pathomechanisms and identify new therapeutic targets. Cardiac ryanodine receptor (RyR2), the Ca2+ release channel of the sarcoplasmic reticulum, is believed to be a good therapeutic target in a group of certain heart diseases, collectively called cardiac ryanopathies. Ryanopathies are associated with the impaired function of the RyR, leading to heart diseases such as congestive heart failure (CHF), catecholaminergic polymorphic ventricular tachycardia (CPVT), arrhythmogenic right ventricular dysplasia type 2 (ARVD2), and calcium release deficiency syndrome (CRDS). The aim of the current review is to provide a short insight into the pathological mechanisms of ryanopathies and discuss the pharmacological approaches targeting RyR2.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Displasia Arritmogênica Ventricular Direita , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/terapia
4.
J Biol Chem ; 297(3): 101015, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34329682

RESUMO

Transient receptor potential cation channel subfamily M member 4 (TRPM4) is a Ca2+-activated nonselective cation channel that mediates membrane depolarization. Although, a current with the hallmarks of a TRPM4-mediated current has been previously reported in pancreatic acinar cells (PACs), the role of TRPM4 in the regulation of acinar cell function has not yet been explored. In the present study, we identify this TRPM4 current and describe its role in context of Ca2+ signaling of PACs using pharmacological tools and TRPM4-deficient mice. We found a significant Ca2+-activated cation current in PACs that was sensitive to the TRPM4 inhibitors 9-phenanthrol and 4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]benzoic acid (CBA). We demonstrated that the CBA-sensitive current was responsible for a Ca2+-dependent depolarization of PACs from a resting membrane potential of -44.4 ± 2.9 to -27.7 ± 3 mV. Furthermore, we showed that Ca2+ influx was higher in the TRPM4 KO- and CBA-treated PACs than in control cells. As hormone-induced repetitive Ca2+ transients partially rely on Ca2+ influx in PACs, the role of TRPM4 was also assessed on Ca2+ oscillations elicited by physiologically relevant concentrations of the cholecystokinin analog cerulein. These data show that the amplitude of Ca2+ signals was significantly higher in TRPM4 KO than in control PACs. Our results suggest that PACs are depolarized by TRPM4 currents to an extent that results in a significant reduction of the inward driving force for Ca2+. In conclusion, TRPM4 links intracellular Ca2+ signaling to membrane potential as a negative feedback regulator of Ca2+ entry in PACs.


Assuntos
Células Acinares/metabolismo , Sinalização do Cálcio , Potenciais da Membrana , Pâncreas Exócrino/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Feminino , Transporte de Íons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas Exócrino/citologia , Técnicas de Patch-Clamp , Fenantrenos/farmacologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética
5.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255644

RESUMO

Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.


Assuntos
Terapia Genética , Camundongos Transgênicos/genética , Distrofias Musculares/genética , Miopatias Congênitas Estruturais/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia
6.
Cell Calcium ; 88: 102213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32408025

RESUMO

In this study we performed the comprehensive pharmacological analysis of two stereoisomers of 4-chloro-meta-cresol (4CMC), a popular ryanodine receptor (RyR) agonist used in muscle research. Experiments investigating the Ca2+-releasing action of the isomers demonstrated that the most potent isomer was 4-chloro-orto-cresol (4COC) (EC50 = 55 ± 14 µM), although 3-chloro-para-cresol (3CPC) was more effective, as it was able to induce higher magnitude of Ca2+ flux from isolated terminal cisterna vesicles. Nevertheless, 3CPC stimulated the hydrolytic activity of the sarcoplasmic reticulum ATP-ase (SERCA) with an EC50 of 91 ± 17 µM, while 4COC affected SERCA only in the millimolar range (IC50 = 1370 ± 88 µM). IC50 of 4CMC for SERCA pump was 167 ± 8 µM, indicating that 4CMC is not a specific RyR agonist either, as it activated RyR in a similar concentration (EC50 = 121 ± 20 µM). Our data suggest that the use of 4COC might be more beneficial than 4CMC in experiments, when Ca2+ release should be triggered through RyRs without influencing SERCA activity.


Assuntos
Cresóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Cresóis/química , Hidrólise , Íons , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Contração Muscular/efeitos dos fármacos , Coelhos , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Estereoisomerismo
7.
Gen Physiol Biophys ; 38(2): 183-186, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30821253

RESUMO

Very recently, the diamide insecticide chlorantraniliprole was shown to induce Ca2+-release from sarcoplasmic reticulum (SR) vesicles isolated from mammalian skeletal muscle through the activation of the SR Ca2+ channel ryanodine receptor. As this result raises severe concerns about the safety of this chemical, we aimed to learn more about its action. To this end, single-channel analysis was performed, which showed that chlorantraniliprole induced high-activity bursts of channel opening that accounts for the Ca2+-releasing action described before.


Assuntos
Inseticidas , Canal de Liberação de Cálcio do Receptor de Rianodina , ortoaminobenzoatos , Animais , Cálcio , Diamida , Inseticidas/farmacologia , Músculo Esquelético , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Retículo Sarcoplasmático , ortoaminobenzoatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...